Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.28.21265616

ABSTRACT

Importance: Children are less likely than adults to have severe outcomes from SARS-CoV-2 infection and the corresponding risk factors are not well established. Objective: To identify risk factors for severe disease in symptomatic children hospitalized for PCR-positive SARS-CoV-2 infection. Design: Cohort study, enrollment from February 1, 2020 until May 31, 2021 Setting 15 children's hospitals in Canada, Iran, and Costa Rica Participants: Patients <18 years of age hospitalized with symptomatic SARS-CoV-2 infection, including PCR-positive multisystem inflammatory syndrome in children (MIS-C) Exposures: Variables assessed for their association with disease severity included patient demographics, presence of comorbidities, clinical manifestations, laboratory parameters and chest imaging findings. Main Outcomes and Measures: The primary outcome was severe disease defined as a WHO COVID-19 clinical progression scale of [≥]6, i.e., requirement of non-invasive ventilation, high flow nasal cannula, mechanical ventilation, vasopressors, or death. Multivariable logistic regression was used to evaluate factors associated with severe disease. Results: We identified 403 hospitalizations. Median age was 3.78 years (IQR 0.53-10.77). At least one comorbidity was present in 46.4% (187/403) and multiple comorbidities in 18.6% (75/403). Severe disease occurred in 33.8% (102/403). In multivariable analyses, presence of multiple comorbidities (adjusted odds ratio 2.24, 95% confidence interval 1.04-4.81), obesity (2.87, 1.19-6.93), neurological disorder (3.22, 1.37-7.56), anemia, and/or hemoglobinopathy (5.88, 1.30-26.46), shortness of breath (4.37, 2.08-9.16), bacterial and/or viral coinfections (2.26, 1.08-4.73), chest imaging compatible with COVID-19 (2.99, 1.51-5.92), neutrophilia (2.60, 1.35-5.02), and MIS-C diagnosis (3.86, 1.56-9.51) were independent risk factors for severity. Comorbidities, especially obesity (40.9% vs 3.9%, p<0.001), were more frequently present in adolescents [≥]12 years of age. Neurological disorder (3.16, 1.19-8.43) in children <12 years of age and obesity (3.21, 1.15-8.93) in adolescents were the specific comorbidities associated with disease severity in age-stratified adjusted analyses. Sensitivity analyses excluding the 81 cases with MIS-C did not substantially change the identified risk factors. Conclusions and Relevance: Pediatric risk factors for severe SARS-CoV-2 infection vary according to age and can potentially guide vaccination programs and treatment approaches in children.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , von Willebrand Disease, Type 3 , Dyspnea , Obesity , Nervous System Diseases , Death , Anemia , COVID-19 , Hemoglobinopathies
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.17.21255651

ABSTRACT

Children have been disproportionately affected during the COVID-19 pandemic. We aimed to assess a saliva-based algorithm for SARS-CoV-2 testing to be used in schools and childcare institutions under pandemic conditions. A weekly SARS-CoV-2 sentinel study in primary schools, kindergartens and childcare facilities was conducted over a 12-week-period. In a sub-study covering 7 weeks, 1895 paired oropharyngeal and saliva samples were processed for SARS-CoV-2 rRT-PCR testing in both asymptomatic children (n=1243) and staff (n=652). Forty-nine additional concurrent swab and saliva samples were collected from SARS-CoV-2 infected patients (patient cohort). The Salivette® system was used for saliva collection and assessed for feasibility and diagnostic performance. For children a mean of 1.18 ml saliva could be obtained. Based on results from both cohorts, the Salivette® testing algorithm demonstrated specificity of 100% (95% CI 99.7 - 100) and sensitivity of 94.9% (95% CI 81.4 - 99.1) with oropharyngeal swabs as reference. Agreement between sampling systems was 100% for moderate to high viral load situations (defined as Ct-values < 33 from oropharyngeal swabs). Comparative analysis of Ct-values derived from saliva vs. oropharyngeal swabs demonstrated a significant difference (mean 4.23; 95% CI 2.48–6.00). In conclusion, the Salivette® system proved to be an easy-to-use, safe and feasible saliva collection method and a more pleasant alternative to oropharyngeal swabs for SARS-CoV-2 testing in children aged 3 years and above.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.22.21249971

ABSTRACT

A 12-week sentinel programme monitored SARS-CoV-2 in primary schools, kindergartens and nurseries. Out of 3169 oropharyngeal swabs, only two tested positive on rRT-PCR while general incidence rates were surging. Thus, children attending respective institutions are not significantly contributing to the pandemic spread when appropriate infection control measures are in place.

SELECTION OF CITATIONS
SEARCH DETAIL